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Abstract. We obtain a general Euclidean connection for the so(n.'m) Lie algebra. This Euclidean 
connection allows an algebraic derivation of the S-matrix and it reduces to the known connection 
in suitable circumstances. 

1. Introduction 

The Euclidean connection has played an important role in the algebraic approach to 
scattering [I]. In this fiamework the S-matrix of a scattering system may be evaluated 
by establishing a connection between the operators of the potential algebra describing the 
interaction potential and the operators of an appropriate asymptotic algebra describing the 
long-range behaviour of the system. This connection formula has been referred to as the 
Euclidean connection. The algebraic approach was applied to heavy ion collisions [2], 
nuclear reactions [3] and to relativistic systems [4]. In these algebraic approaches the 
potential algebra operators are expressed as second-order polynomials in the asymptotic 
algebra operators 111 and it leads to an S-matrix which is a ratio of r functions. Although 
this is the case for all of the problems which can be treated algebraically (the Poschl-Teller 
potential, the Morse potential, the Coulomb potential), we shall prove that this is not the 
general case. The fact that the usual Euclidean connection works for all known examples is 
due to the expression of the potential algebra operators as second-order differential operators. 

The purpose of,this paper is to generalize the usual Euclidean connection and to extract 
an S-matrix for the scattering with an so(n, m) potential algebra. Also, we shall obtain 
geometric Hamiltonians which are related to this Euclidean connection. 

2. General Euclidean connections 

2.1. Euclidean connection for the so@, m) Lie algebra 

We consider the potential Lie algebra so(n, m) and we denote by Li the operators of the 
so(n) Lie subalgebra and by Vm the operators of the so(m) Lie subalgebra. Also, we take 
e(n) f3 e(m) to be the asymptotic Lie algebra where e(n) is the Euclidean Lie algebra in n 
dimensions with generators li and pi ,  and e(m) is the Euclidean Lie algebra in m dimensions 
with generators ucL and YC,. It is a straightforward but tedious exercise to prove that the 
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are a Hermitian representation of the so(n, m) algebra with 

Cm<n,m) = L2 + V 2  - CA; = o(o+n + m  -2) 
iu 

where OJ = -(n + m - 2)/2 + iq provided that li ,  pi give a Hermitian representation of the 
e(n)  algebra with pip‘  = k2, and U,, ir, give a Hermitian representation of the e(m) algebra 
with x,xa = 1. If @(k,  C,(n) + Cs,(m)) 0 the above Euclidean connection reduces to the 
known connection [5]. Formula (1) does not reduce to the usual formula for an arbitrary 4 
because C,.,) + C,,(m) does not commute with pi and JI, although it commutes with l i  and 
U. . 

It is important to note that (1) can be obtained by a unitary transformation of the 
usual Euclidean connection, but this unitary transformation in the -ke(n) representation 
(appropriate to describe the incoming waves) is different from the unitary transformation 
in the +ke(n) representation (appropriate to describe the outgoing waves) where k > 0. 
If @(k) = @(-k)  then the two unitary transformations are the same and, of course, the 
S-matrix will be identical to the usual ma&ix, i.e. a ratio of two r functions, 

If we take the Hamiltonian as a function of the Casimir operator of the so(n, m) algebra 
we can write 

Therefore, the scattering of the energy E = k2, where k is the momentum, is described 
by representation (1) of the so@, m) Lie algebra where k2 = f(&. We consider that f is 
an invertible function and, thus, we can obtain q* = $@). This algebraic argument fixes 
q2 but the appropriate signs for the +k and -k representations are still undetermined. In 
addition to this undetermination which is pointed out for the usual Euclidean connection in 
[6], in our general case we have an arbitrary function @ ( k ,  Cso(n,m) + C,,,,)) which cannot 
be fixed by algebraic arguments. 

Following the algebraic approach of [l], one can derive a recurrence relation for the 
S-matrix. We shall study the so(n, 1) case, the general so(n, m) case being similar. 

2.2. The so(n, I )  algebraic scattering 

The so(n, 1) Lie algebra is known as a symmehy algebra for Coulomb scattering in n 
dimensions. The case n = 2 is also known as a potential algebra for the scattering in the 
Poschl-Teller or Morse potentials. In the case considered (m = l), our Euclidean connection 
(1) reduces to the expression of the so(n, 1) operators in terms of the e(n) operators: 

Lj = 1 j  
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With the above Euclidean connection, the recurrence relation for the S-matrix can be written 
as 

where . .  

O + ( k , Z ) = ~ ( k , ( l + 1 ) ( Z + n - l ) ) - ~ ( k , l ( l + n - 2 ) )  

~ - ( k , ~ ) = ~ ( - k , ( ~ + l ) ( ~ + n - l ) ) - ~ ( - k , l ( ~ + n - ~ ) )  

and q$(k) = f - ‘ (kZ) if H = f (-(?)’ - Cso(n,~$ The usual recurrence relation [SI is 
obtained by taking O+(k, 1 )  = O-(k, Z). We cannot determine O+ and O- by algebraic 
arguments. Therefore, a large class of S-mahices can be written in the form (4) with suitable 
0+, O-. This means that a large class of scattering problems can be treated in an algebraic 
framework modifying the usual Euclidean connection. Unfortunately, there is no  algebraic^ 
method to obtain the appropriate forms for the Euclidean connection which correspond to 
a particular problem. 

To justify the usefulness of the general Euclidean connection given above, we construct 
a Hamiltonian which is related to the so(2,l) algebra but with a Euclidean connection 
different from the usual one. The operators 

(5) 

. a  
ap 

Lo = -1- 

with 

B 
(f + 01) sinhp + (f -a) cos p 

f @ ) =  

and 01, B E Rare known to satisfy the so(l,2) commutation relations. For H = -a-Csacn,l, 
we have H = -8; + V,(p) where 

fi2-Znfi[(i +a)sinhp+(;  -0( )coshp1+201(m~-~)  
[(3 +a)s inhp+($  -01)coshpl~ 

V m b )  - .~ . (8) 

In this case we have the usual connection formula which yields the recurrence relation [l] 

We can consider the operators 
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with a&) a power series in LO with complex coefficients, and B a real valued function. 
Operators (10) obviously satisfy the So(1,Z) commutation relations but 
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Operators (10) act on the linear space C2 = o 8 h where o is the complex linear space 
of smooth functions on R+ which take the zero value in the origin, and h is the Hilbert 
space with the orthonormal basis (lm), m = 0,41, f2,. . .}. If B(0, LO) = 0 then the 
operator a(Lo)+B(p, Lo)ap@, LO) transform Q into C2 and, due to the theorem of existence 
and unicity for the solution of a firstrorder differential equation, the above operator has a 
well defined inverse. Therefore, operators (10) are well defined on Q. To evaluate the 
commutator of the operators i and B we use the obvious relation [i, B ]  = -I. A [ A ,  B ] .  7i. 
There is no ordering problem in equation (IO) as the numerators and denominators commute. 

If, lim,,,,92(p, LO) = €(LO) for the operators (IO) and taking into account their 
asymptotic behaviour we have the recurrence relation 

I 

a(m + 1) + ike(m + 1) a*(m + 1) + ikc(m + 1) m + + ik 
Sm+l(k) = a*(m + I) - ikc(m + 1).<(m + I) - ikc(m + 1) m + 4 - ik 

a*(m) - ikdm) a(m) - ikc(m) 
a(m) + ike(m) a*(m) + iks(m) X S m  (k) 

which can be solved to yield 

which is not a ratio of r functions. In the particular case Ima(m) = m, Rea(m) = a, 
~ ( m )  = c and denoting y(k) = Ek +in  we have 

The above form of the S-matrix, i.e. a rational function in angular momentum m, was 
introduced earlier on heuristic gounds by Remler [7] for atomic collisions, and used in 
heavy-ion scattering 181. The WKB inversion for this simple analytic form of the S-matrix 
can be carried out analytically [8]. The quantal inversion uses the logarithmic derivatives of 
the Jost solutions in the reference potential [8] (these logarithmic derivatives are the solutions 
of a Riccati equation with appropriate boundary conditions). When we use transformation 
(IO), am = s Y m  where {YmJ is the standard basis~for the realization Li, and {am] is 
the standard basis for the realization zi. Thus, we have 

Ia*(m) - B ( P ,  m)aB(p; ~ ) I % ( P )  = M m )  + B(P,  m)aB(P7 m)}%(m(p). 

The boundary condition at the origin Ym(0) = 0 is preserved if p(0, m) = 0 and a(m) # 0. 
These conditions ensure that operators (10) are well defined. 
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Therefore, to preserve the boundary condition at the origin we have to use (10) with 
B(0,m) = 0 (e.g. B(p) = tanhp); the case B @ . m )  = 0 is trivial. Transformation 
(10) can be used iteratively to obtain examples of Hamiltonians with different S-matrix 
recurrence relations. The new recurrence relations are the usual relations provided that 
limp-,m B(p,  Lo) = 0. The Hamiltonian connected to the realization (10) can be put in the 
form 

(14) 
QG~) + B ( P ,  L o ) a m 3  L ~ )  H ~ * ( ~ o )  - B(P,  L ~ ) ~ P ( P ,  L ~ )  H =  
a*(Lo) - B ( P ,  Lo)aB(&i Lo) 4 0  + B ( P ,  Lo)aB(P, Lo) 

where H is the Hamiltonian connected to the realization given by the L, operators. 

3. Conclusions 

We obtain a general Euclidean connection (1) which contains the usual connection as a 
particular case. This Euclidean connection contains an arbitrary function which cannot be 
fixed by algebraic means. A large class of scattering problems can now be treated in an 
algebraic framework by modifying the usual Euclidean connection but, unfortunately, there 
is no algebraic method avail able^ to choose the appropriate Euclidean connection. Also, 
we construct a Hamiltonian (14). for which the appropriate Euclidean connection is not the 
usual connection. The algebraic S-matrix for this Hamiltonian could be a rational function in 
angular momentum (up to a factor). Such rational representations of the scattering function 
were used in atom-atom scattering and heavy-ion collisions. 

The present approach allows us to obtain many examples of Hamiltonians for which 
the usual S-matrix recurrence relation holds by starting with a known example and using 
the unitary transformation (10) with limp-,mB(p) = 0. It is important to note that the 
case p =constant is not allowed and that all the obtained Hamiltonians contain momentum 
dependent potentials. 
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